Setting Priorities in the CRI Bioinformatics Core

Matt Eldridge Head of CRI Bioinformatics Core

CRI Bioinformatics Core

ISMB/ECCB Stockholm 2009

CRI Bioinformatics Core

CRUK Cambridge Research Institute

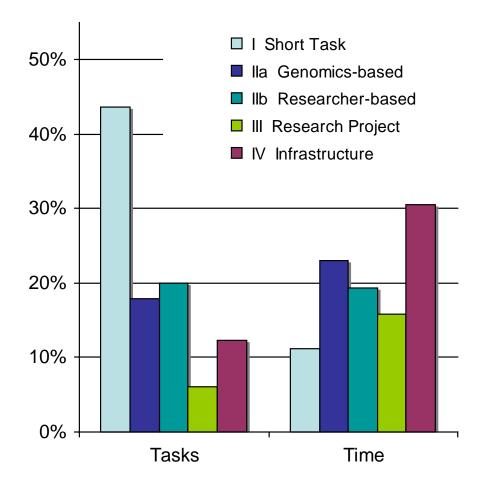
- One of 5 core-funded Cancer Research UK research institutes
- 19 research groups, 7 core facilities
 - Basic research in cancer biology
 - Clinical research on specific cancers
 - Population-based studies in screening and prevention

Bioinformatics Core

- Primary focus on high-throughput genomics platforms
 - Microarrays Illumina & Agilent
 - *High-throughput sequencing* 3 Illumina GAIIs
- 8 in team
 - 1 statistician, 3 microarray analysts, 2 HTS specialists, 2 software/db dev
- No cross-charging
- Monitor usage by research group/project

CRI Bioinformatics Core Activities

- Statistical support
- Experimental design
- Primary data analysis
 - microarray QC, spatial defect removal
 - Illumina GA pipeline
- Secondary/downstream analysis
 - Differential expression
 - ChIP-seq peak calling
 - Structural variation, genomic rearrangements
 - SNP and CN analysis
 - microRNA profiling
 - GO enrichment, GSEA


- Training
 - motif finding
 - functional/network analysis
 - microarray analysis
- Data management
 - Solexa storage
 - Microarray database
- Software development
 - Bioconductor packages
 - Beadarray
 - Illumina annotation packages
 - Solexa & microarray LIMS
- Bioinformatics tools
 - Ensembl, Galaxy, Cytoscape

Matt Eldridge, CRI Bioinformatics Core

ISMB/ECCB Stockholm 2009

Types of Projects

- Class I Short tasks
 - Typically few hours, well defined output
- Class IIa Genomics-based
 - Analysis of data from Genomics Core
 - Initiated in experimental design meeting
 - Defined output (Sweave report, DE gene list, Cytoscape session)
- Class IIb Researcher-based
 - Follow-on from previous class lia project or meta-analysis on existing data
 - Initiated by contact from researcher
 - Pre-agreed output and timescale
- Class III Research projects
 - Collaborative, open-ended
 - Poorly defined output
- Class IV Infrastructure

Workload

- Microarrays
 - ~5 projects per month
 - ~30 arrays/samples per project on average
- High-throughput sequencing
 - Primary analysis for 3 GAIIs
 - 2 x 50bp SE runs per GAII per week
 - Secondary analysis for 1/3 data
- 6 12 projects per person at any given time

Managing Workload

- Define & refine process
 - Set expectations
 - Define scope/deliverables
- Project/issue tracking system Redmine
- Deliver data/output in stages
 - e.g. BED/WIG track within 3–5 days, peaks within 1–2 weeks, downstream analysis results later still
- Standardize and automate data analysis pipelines
- Train researchers to carry out downstream analysis tasks for themselves – classroom, individual, wiki
 - Online functional analysis tools DAVID, GeneTrail, etc.
 - Motif analysis
 - Cytoscape
 - Galaxy for operating on genomic interval/feature data
 - IGB & IGV browsers for data visualization

