
Keep moving forward

Sergi Sayols
Bioinformatics Core Facility

Institute of Molecular Biology Mainz

July 2016

Context

Our starting point:

● pipelines for standard tasks:

● not all ChIP-seq experiments are the same, but share a common
part: QC + Mapping + peak calling + …

● same applies to other experiments: RNA-seq, Exome-seq, etc.

● many options: bash, make, bpipe, snakemake, Galaxy, HTCondor

● infrastructure: workstations, servers, clusters, cloud

FastQC

IPstrength

...

Mapping Peak calling ...

Context

Nice idea, let's think further

Challenges:

● making analysis reproducible over time

● changing versions

● new standards: Tophat + Cufflinks vs. Star + edgeR, Bowtie vs. BWA, …

● being able to reuse pipelines: new projects, new infrastructure

● scalability: +samples → +cores

[one possible] Solution:

containerizing software stacks

Context

What's this talk about?

How to painlessly run all this
(painless to run, painful to set up)

● Analyzing a new project, as easy as copy & paste
● Getting the same results

Containers

LIB OS LIB

APP APP

Baremetal

● Tightly coupled
● Bare metal performance
● Not portable

Containers

● Loosely coupled
● Bare metal performance
● Portable

VMs

● Loosely coupled
● Performance overhead
● Not as portable

OS

APP

LIB

APP

LIB

OS

APP

LIB

OS

APP

LIB

OS

"Containers wrap up a piece of software in a complete filesystem that contains everything it needs to run:
code, runtime, system tools, system libraries – anything you can install on a server.

This guarantees that it will always run the same, regardless of the environment it is running in."

source: www.wikipedia.org

Containers

Benefits:

✔ lightweight VM

✔ image portability→pack once, run

✔ everywhere: workstation, server, cloud

✔ software stack exportable to tar.gz: pack with data

✔ control versions/dependencies of packaged software

✔ collaborate/branch/merge

Docker specific:

✔ build facility

✔ App containers: PaaS oriented single process container

✔ storage separated via layers

Containers

OS

APP

LIB

APP

LIB

Containers

Downsides:

✗ security concern: need special group permissions. Possible solutions:

● grant permissions: works on some configs. OK

● up at boot time, add a listener. Complex, not cluster friendly

✗ complex integration with the batch scheduler. Partial solutions:

● run the full stack as a single task, with max resources allocated.
Cons: no fine grained management of the resources

● containerize tools (samtools, bwa, R), not workflows/pipelines/stacks.
Cons: more complex bundle/share/deploy

2 paradigms:

● pack single apps→friendly with LSF

✔ pack full software stacks→ friendly with the data and the concept of PaaS

Working with docker containers

FROM debian:stable
ENTRYPOINT ["/opt/bpipe/default/bin/bpipe","run"]

install samtools
COPY ./deps/samtools-1.2 /usr/local/src/samtools-1.2
WORKDIR /usr/local/src/samtools-1.2
RUN make && \
 make install prefix=/opt/samtools/1.2 && \
 rm -rf /usr/local/src/samtools-1.2 && \
 echo "export PATH=/opt/samtools/1.2/bin:\$PATH" > \
 /opt/samtools/1.2/env.sh && \
 chmod ugo+rx /opt/samtools/1.2/env.sh

install pipelines and wrappers
COPY ./deps/imb-forge /opt/imb-forge

● Create a docker container: Dockerfile

● Build:
 $ docker build -t imbforge/chipseq:v1 .

● Push to the docker hub:
 $ docker push imbforge/chipseq:v1

● Run a container:
 $ docker run --rm -v ${WORKDIR}:${WORKDIR} -w ${WORKDIR} -t imbforge/chipseq:v1\

 -n ${MAX_PAR_PROCS} ${WORKDIR}/chipseq_v1.2.txt ${WORKDIR}/rawdata/*.fastq.gz

● Run an interactive shell:
 $ docker run --entrypoint=/bin/bash -ti imbforge/chipseq:v1 -s

container
image

samtools.tar.gz

docker
hub

docker

container
image

download
debian:stable

commit

Working with docker containers

Containers in a workstation

Pull & play:

● pull the container image from the repo
$ docker pull imbforge/rnaseq

● run with bind mount the local volume
$ export WORKDIR=/project/rna-seq

$ docker run --rm -v ${WORKDIR}:${WORKDIR} -w \

 ${WORKDIR} -t imbforge/chipseq:v1 -n ${MAX_PROCS} \

 ${WORKDIR}/chipseq_v1.2.txt ${WORKDIR}/rawdata/*.fq.gz

Containers in a private cluster

Complex setup, many questions open:

✔ SAN/NAS/parallel FS help

✗ security concern: grant permissions or boot up the
container with a listener

✗ difficult to fine-grain resource allocation

● possible solution (unexplored): the pipeline splits in
batches and dynamically boots up containers

✗ complex setup of the pipeline

✔ suitable for large scale projects

Workload manager

Containers in a (semi)public cluster

● 555 nodes, 35,520 cores, 89TB RAM, 1110TB storage

✗ even worse, strict security policy!

✗ no root-like for us

● Partial solution: chroot jails + special queues for the
pipelines that automatically decompress a tarball with
the software stack. Downsides:

✗ no fine-grained resource allocation

✗ CPU intensive (.tar.gz ~2Gb)

✗ complex setup

Workload manager

source: www.wikipedia.org

Horizon: Containers in the cloud
● PaaS: allow customers to develop, run, and manage applications without

the complexity of building and maintaining the infrastructure

● load and boot the software stacks as containers

● easy/transparent to scale-up/down hardware, AWS

● better management of the resources (although not ideal)

user 1

compute servers

block storage

NovaGlance

Cinder

Docker
driver

Virt API

Docker

Rna-seq container

ChIP-seq container

... container

Horizon

Dashboard

docker registry

user 2
Rna-seq container

Rna-seq container

ChIP-seq container

Conclusions

✔ Containers are a neat way to deploy full application stacks

✔ Can be packed with the data to ensure reproducibility

✗ Not trivial to attach them to a batch scheduler

✔ The cloud paradigm may help to leverage the use of resources

Thanks!

